Answer:
Step-by-step explanation:
Even numbers are those that can be divided by 2.
3440 and 7802
Odd numbers are the rest
4893, 1451 and 6645
Smallest to largest
1451, 3440, 4893, 6645 and 7802
Sum of even numbers
3440+7802= 11242 divided by 2(there are only 2 numbers)
11242 ÷ 2 = 5621
 
        
             
        
        
        
Answer:
Step-by-step explanation:
The slope intercept form of an equation of a line is y = mx + b, where m is the slope and b is the y-intercept (the value of y when x=0).
Since the slope is (1/2), we can write:
y = (1/2)x + b
We want a value of b such that it forces the line to go through point (-10,9).  Enter that point in the equation and solve for b:
y = (1/2)x + b
9 = (1/2)*(-10) + b
9 = -5 + b
b = 14
The eqyuation of a line with a slope of (1/2) and goes through point (-10,9) is:
y = (1/2)x + 14
See attachment.
 
        
             
        
        
        
Answer:
pretty sure its,100
Step-by-step explanation:
 
        
             
        
        
        
Answer:
Step-by-step explanation:
4x-13
 
        
                    
             
        
        
        
Answer:
<em><u>2</u></em><em><u>.</u></em><em><u>3</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>3</u></em><em><u>,</u></em><em><u> </u></em><em><u>1</u></em><em><u>)</u></em><em><u> </u></em>
Step-by-step explanation:
1) Simplify  3 × (1, 1) 3 × (1, 1)  to  3× 1, 13 × 1,1.
<em>2</em><em>.</em><em>3</em><em> </em><em>-</em><em> </em><em>(</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>1</em><em>,</em><em> </em><em>1</em><em> </em><em>)</em>
2) Simplify 3 × 1 to 3.
2.3 - ( 3, 1)
<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>2</u></em><em><u>.</u></em><em><u>3</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>3</u></em><em><u>,</u></em><em><u> </u></em><em><u>1</u></em><em><u>)</u></em><em><u>.</u></em>