Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
The members of these groups make up the majority of voters in many districts thus this be considered a problem.
<u>Option: D</u>
<u>Explanation:</u>
Interest groups play a key role in US politics. Such organizations are made up of wealthy and powerful members who often seek to impose some form of leverage in politicians to promote their goals and agendas. Across the years via many campaigns, they have understood how to speak and manipulate elected leaders and apply leverage to get the kind of legislation that is in their favor. Here the majority of voters in several districts are standing due to group members, as we recognize the interest group belongs to a body in which it uses different methods of lobbying to influence others.
Answer:
In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.
You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.
Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.
hope it helps! stay safe and tell me if im wrong pls :D
(brainliest if you want, or if its right pls) :)
Complete Question:
Find the resistance of a wire of length 0.65 m, radius 0.25 mm and resistivity 3 * 10^{-6} ohm-metre.
Answer:
Resistance = 9.95 Ohms
Explanation:
<u>Given the following data;</u>
Length = 0.65 m
Radius = 0.25 mm to meters = 0.00025 m
Resistivity = 3 * 10^{-6} ohm-metre.
To find the resistance of the wire;
Mathematically, resistance is given by the formula;

Where;
- P is the resistivity of the material.
- L is the length of the material.
- A is the cross-sectional area of the material.
First of all, we would find the cross-sectional area of the wire.
Area of circle = πr²
Substituting into the equation, we have;
Area = 3.142 * (0.00025)²
Area = 3.142 * 6.25 * 10^{-8}
Area = 1.96 * 10^{-7} m²
Now, to find the resistance of the wire;


<em>Resistance = 9.95 Ohms </em>