I do not understand what your saying could u plz be more specific?
Answer:
If using radians: 16.2
If using degrees: 12.8
Don't forget your units
Explanation:
I assume that x represents the velocity?
If so, then just substitute the value t and solve
Answer:
100 ly are 
Explanation:
The speed of light is, by definition (we define this and derive a definition of distance from there nowadays), c=299792458m/s. We want to know, at this speed, how much distance the radio signals travel in 100 years. Since each year has 365 days (not a leap one though), each day has 24 hours, each hour has 60 minutes and each minute has 60 seconds, the number of seconds in a year will be (365)(24)(60)(60)=31536000, so the distance traveled by the waves in 100 years will be:
, which, of course, are 100 light years.
Consider the motion of the car before brakes are applied:
v₀ = maximum initial velocity of the car before the brakes are applied
t = reaction time = 0.50 s
x₀ = distance traveled by the car before brakes are applied
since car moves at constant speed before brakes are applied
Using the equation
x₀ = v₀ t
x₀ = v₀ (0.50)
Consider the motion after brakes are applied :
v₀ = initial velocity of the car before the brakes are applied
a = acceleration = - 10 m/s²
v = final velocity of the car after it comes to stop = 0 m/s
x = stopping distance = initial distance - distance traveled before applying the brakes = 38 - x₀ = 38 - v₀ (0.50)
Using the equation
v² = v²₀ + 2 a x
inserting the values
0² = v²₀ + 2 (- 10) (38 - v₀ (0.50))
v²₀ = 20 (38 - v₀ (0.50))
v₀ = 23 m/s
Answer:
The answer is most likely C.
Ready-to-eat foods are stored at the top of the fridge, away from raw foods so that harmful bacteria cannot transfer from the raw food to the cooked food. Raw meat, poultry and fish in sealed containers to stop them touching or dripping onto other foods.