The product of (wavelength) times (frequency) is always the same number ...
the speed of the wave in whatever material it's traveling through. So if the
frequency is increased, then the wavelength must <em><u>de</u></em>crease by the same
factor, in order to keep the product the same.
The correct answer is amplitude
7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.
Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.
λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.
An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:
λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)
λ = 7.5 x 10⁻¹¹m
Let us examine the given situations one at a time.
Case a. A 200-pound barbell is held over your head.
The barbell is in static equilibrium because it is not moving.
Answer: STATIC EQUILIBRIUM
Case b. A girder is being lifted at a constant speed by a crane.
The girder is moving, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case c: A jet plane has reached its cruising speed at an altitude.
The plane is moving at cruising speed, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case d: A box in the back of a truck doesn't slide as the truck stops.
The box does not slide because the frictional force between the box and the floor of the truck balances out the inertial force. The box is in static equilibrium.
Answer: STATIC EQUILIBRIUM
Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.