In electricity, the most famous and basic equation is the Ohm's Law which relates the parameters voltage, current and resistance. One form of this law as written in equation is V = IR, where V is the voltage in volts, I is the current in amperes and R is the resistance in ohms. These parameters depends in the arrangements, whether it's series or parallel.
In a series connection, the voltage is greater across a high-resistance resistor. Therefore, the voltage is much greater for the 20-ohm resistor. However,if it is a parallel circuit, the voltage is just the same for both resistors.
A. is the right answer since work is negative and Q which is heat in negative also
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy.
i hope this helps.
Explanation:
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>
Answer:

Explanation:
We know,
..............(1)
where,
η = Efficiency of the engine
T₁ = Initial Temperature
T₂ = Final Temperature
Q₁ = Heat available initially
Q₂ = Heat after reaching the temperature T₂
Given:
η =0.280
T₁ = 3.50×10² °C = 350°C = 350+273 = 623K
Q₁ = 3.78 × 10³ J
Substituting the values in the equation (1) we get

or

or

⇒ 
Now,
The entropy change (
) is given as:

or

substituting the values in the above equation we get

