Answer:
radio waves, micro wave, x-rays
Explanation:
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
s alluded to in the other answers, salt refers to any ionic compound that doesn't have “oxides” in it. Table salt is sodium chloride. Going down the periodic table, the first column contains lithium, sodium, potassium, rubidium, cesium, and francium. This group (alkali metals) of atoms (and their corresponding positive ions) gets larger in the order shown above. Therefore, their ionic bonds with chloride (or any nonmetal) gets smaller. The trend of their corresponding compounds is a decreasing hardness, decreasing melting point, decreasing boiling point, and decreasing thermal stability. These are the major periodic trends of these corresponding compounds. Other metal ions generally have higher positive charges on them. This makes the ionic bonds considerably larger and you can probably surmise most of their corresponding properties listed above. However, the details of their lattice structures may cause the overall trend to vary.
-- It takes 100 calories of heat to make 10 grams of the stuff 20° warmer.
How much of the heat warms each gram ?
-- It takes 10 calories of heat to make each gram of the stuff 20° warmer.
How much of the heat warms that gram each degree ?
-- It takes 1/2 calorie of heat to make each gram of the stuff 1° warmer.
The specific heat of that stuff is
(1/2 calorie) per gram per °C.
That's choice-3 .
Answer:
Sound waves are longitudinal in nature.
Explanation:
There are many types of waves like transverse, longitudinal, electromagnetic wave etc.
Sound waves are longitudinal in nature. In longitudinal type of wave, the medium particles moves parallel to the propagation of the wave. This type of waves move in the form of compression and rarefaction.
In compression, the particle density at a point is very less while in rarefaction, the particle density at a point is very high.
So, the correct option is (b) "longitudinal wave".