<em>Answer:</em>
<em>The answers are: </em>
- <em>A-which is the image is always right side up.</em>
- <em>E-the image is virtual</em>
<em></em>
<em>Explanation: MY EXPLANATION IS YOU ARE WELCOME BIG DOG 100..</em>
<em></em>
<h2 />
Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft
Answer:
It cannot be constant because if it does not change and each time it increases its strength and speed.
Explanation:
The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2