So simply it to 120m/m for 120 minutes. So then you multiply 120x120 and that equals 14,400
Answer:

Explanation:
Given that
Mass of rifle = M
Initial velocity ,u= 0
Mass of bullet = m
velocity of bullet = v
Lets take final speed of the rifle is V
There is no any external force ,that is why linear momentum of the system will be conserve.
Initial linear momentum = Final linear momentum
M x 0 + m x 0 = M x V + m v
0 = M x V + m v

Negative sign indicates that ,the recoil velocity will be opposite to the direction of bullet velocity.
Answer:
The Heavier Firefighter
Explanation:
Generally, more massive objects will have more intertia than less massive objects. As such it takes more force to halt a more massive object if its moving at the same speed as a smaller object. This can also be thought of in the context of Newton's second law. The more force needed to accelerate an object means the more force the object will have.
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).