Almost all hydrocarbon 'burn' reactions involve oxygen; it's by far the most reactive substance in air.
<span>Hydrocarbon combustions always involve </span>
<span>[some hydrocarbon] + oxygen --> carbon dioxide + steam. </span>
C6H6(l) + O2 (g)--> CO2 (g)+ H2O (g)
<span>Balance carbon, six on each side: </span>
C6H6(l) + O2 (g)--> 6CO2 (g)+ H2O (g)
<span>Balance hydrogen, six on each side: </span>
C6H6(l) + O2 (g)--> 6CO2(g) + 3H2O (g)
<span>Now, we have fifteen oxygens on the right and O2 on the left. </span>
<span>Two ways to deal with that. We can use a fraction: </span>
C6H6 (l)+ (15/2)O2 (g)--> 6CO2 (g)+ 3H2O (g)
<span>Or, if you prefer to have whole number coefficients, double everything </span>
<span>to get rid of the fraction: </span>
2C6H6 (l)+ 15O2 (g)--> 12CO2 (g)+ 6H2O (g)
<span>With the SATP states thrown in... </span>
C6H6(l) + (15/2)O2(g) --> 6CO2(g) + 3H2O(g)
Well basically, light is released when an excited electron returns to a lower energy state. Visible Light is part of the electromagnetic spectrum, and is a kind of radiation emitted.
Answer: D. Amount of substance present in Avogadro‘s number of particles of the substance
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 Liters at STP, contains avogadro's number
of particles and weighs equal to the molecular mass of that substance.
A mole is defined as the amount of substance that contains Avogardro number of the substance. Avogadro's number is given by
.
particles