1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
3 years ago
6

Which of the following factors affect the pressure of an enclosed gas?

Physics
1 answer:
dimulka [17.4K]3 years ago
3 0

Answer:

D. All of the above.

Explanation:

PV=nRT

You might be interested in
Consider two waves defined by the wave functions y1(x,t)=0.50msin(2π3.00mx+2π4.00st) and y2(x,t)=0.50msin(2π6.00mx−2π4.00st). Wh
guapka [62]

Answer:

They two waves has the same amplitude and frequency but different wavelengths.

Explanation: comparing the wave equation above with the general wave equation

y(x,t) = Asin(2Πft + 2Πx/¶)

Let ¶ be the wavelength

A is the amplitude

f is the frequency

t is the time

They two waves has the same amplitude and frequency but different wavelengths.

4 0
3 years ago
A toy gun uses a spring to project a 4.5-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gu
marishachu [46]

Answer:

1.93 m/s

Explanation:

Parameters given:

Mass = 4.5g = 0.0045kg

Spring constant = 8.0 N/m

Length of barrel = 13 cm = 0.013m

Frictional force = 0.035N

Compression = 5.8 cm = 0.058m

First, we find the P. E. stored in the spring:

P. E. = ½*k*x²

P. E. = ½ * 8 * 0.058² = 0.013J

Then, we find the work done by the frictional force while the sphere is leaving the barrel of the gun:

Work = Force * distance

The distance here is the length of the barrel.

Work = 0.035 * 0.13 = 0.0046 J

The kinetic energy of the sphere can now be found:

K. E. = P. E. - Work done

K. E. = 0.013 - 0.0046 = 0.0084J

We can now find the speed using the formula for K. E.:

K. E. = ½*m*v²

0.0084 = ½ * 0.0045 * v²

v² = 0.0084/0.00255 = 3.733

=> v = 1.93 m/s

4 0
3 years ago
Read 2 more answers
A solar eclipse will occur Group of answer choices
myrzilka [38]

Answer:

3. at new Moon only when the Moon is on the ecliptic.

Explanation:

  • Solar eclipse is the condition when the moon comes in between the sun and the earth. In this condition the moon casts its shadow on the earth.
  • Whether the eclipse is a total solar eclipse, a partial solar eclipse or an annular solar eclipse depends on various factors, but the position of the moon must be on the same orbital plane as that of the earth's orbit around the sun.
  • The sun is about 400 times larger than the moon in size and the sun is almost 400 times farther from the earth than the moon is, this makes it possible for the moon to cover the sun completely leading to a complete solar eclipse.
  • As we know that the orbit of the earth around the sun and the orbit of the moon around the earth is elliptical which leads to a variation in the distance from their rotating centers, so not of every eclipse the moon covers the sun completely developing an annular eclipse.
  • When the moon is close enough to the earth on the ecliptic but not completely aligned in between the sun and the earth leads to a partial solar eclipse.

7 0
3 years ago
Explaining How Momentum Can Cause
Ghella [55]

Answer:

The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.

Explanation:

6 0
2 years ago
I will mark as the brainliest answer<br><br>plz 8,9,10​
blagie [28]

Answer:

8.  acceleration = \dfrac{d(velocity)}{d(time)}  = 1 unit .

9. acceleration = \dfrac{d(velocity)}{d(time)}  = -1 unit.

10. acceleration = \dfrac{d(velocity)}{d(time)}  = 0 units.

Explanation:

8. i) acceleration = velocity / time

  ii) In this figure velocity = time

  iii) therefore acceleration = \dfrac{d(velocity)}{d(time)} = 1 unit .

9. i) acceleration = velocity / time

  ii) In this figure 4 = m + 5, therefore m = -1

     therefore velocity = (-0.5 \times time) + 5

  iii) therefore acceleration = \dfrac{d(velocity)}{d(time)}  = -1 units.

10.) velocity is constant at 2

     therefore acceleration = \dfrac{d(velocity)}{d(time)}  = 0 units

5 0
3 years ago
Other questions:
  • Sarah moves her box in 3 minutes and does 14 J of work. John moves his box in the same amount of time using 12 J of work. Who is
    7·2 answers
  • In the sit-and-Reach flexibility assessment a new man with average flexibility should be able to
    15·1 answer
  • An object, which is initially at rest, accelerates at a rate of 10 m/s2 . Its final position is 85 m from its initial position a
    5·1 answer
  • Which is it. I don't understand
    10·2 answers
  • In case 1, a force f is pushing perpendicular on an object a distance l/2 from the rotation axis. in case 2 the same force is pu
    10·1 answer
  • Give an example of a vertical motion with a positive velocity and a negative acceleration. Give an example of a vertical motion
    11·1 answer
  • Colulate the wavelength of i)a ball moving of 40m/s i i)A proton moving at 40 ms i i i) An election moving at 40m/s​
    7·1 answer
  • How does Newtons second law of motion relate to Track and field (running sport)?
    6·1 answer
  • Difference between text-talk novel and flash fiction?​
    13·1 answer
  • An ocean liner leaves New York City and travels 18.0o north of east for 155 km. How far east and how far north has it gone? In o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!