Boyles law describes pressure volume relationship at constant temperature pressure is directly proportional to volume at constant tamparature
Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;
where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;
The answer is having fewer neutrons than protons or electrons.
Given :
The average acceleration of a tennis ball that has an initial velocity of 6.0 m/s.
and a final velocity of 7.3 m/s.
It is in contact with a tennis racket for 0.094 s
To Find :
The average acceleration of the tennis ball.
Solution :
We know, average acceleration is given by :
Therefore, average velocity is given by 13.83 m/s².
Hence, this is the required solution.
Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
<h3><u>
Explanation:</u></h3>
The range in which the light exists is described as the electromagnetic spectrum. The light waves, radio waves, gamma rays,etc that exist in the world is not visible to human eyes. A kind of wave that modifies magnetic and electric fields is light. Spectroscopy makes use of all the frequencies and the wavelengths of the electromagnetic radiation.
The part of the electromagnetic spectrum that can be seen by the human eyes is the visible spectrum. The light waves with the wavelengths of 380 to 740 nm can be sen by the human eyes. Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.