Answer:
A. Chemical
- AA battery contains chemical energy
The scientific method i believe
Answer:
is larger
Explanation:
, where
is the acid dissociation constant.
For a monoprotic acid e.g. HA,
and ![\frac{[A^{-}]}{[HA]}=\frac{K_{a}}{[H^{+}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
So, clearly, higher the
value , lower will the the
In this mixture, at equilibrium,
will be constant.
of HF is grater than
of HCN
Hence, ![(\frac{F^{-}}{[HF]}=\frac{K_{a}(HF)}{[H^{+}]})>(\frac{CN^{-}}{[HCN]}=\frac{K_{a}(HCN)}{[H^{+}]})](https://tex.z-dn.net/?f=%28%5Cfrac%7BF%5E%7B-%7D%7D%7B%5BHF%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HF%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29%3E%28%5Cfrac%7BCN%5E%7B-%7D%7D%7B%5BHCN%5D%7D%3D%5Cfrac%7BK_%7Ba%7D%28HCN%29%7D%7B%5BH%5E%7B%2B%7D%5D%7D%29)
So,
is larger
There's three types of decay: alpha beta and gamma.
*
Alpha decay is the emission of a helium nucleus (2protons and 2 neutrons)
*
Beta decay is the emission of an electron or a positron (

or

). It does affect the weight of the atom.
*
Gamma decay is the emission of photons with a high energy. It does affect the weight of the atom.
To answer the question,
any nuclear reaction which decreases the atomic weight by 4 and the protons by 2 is an alpha decay. (release of an alpha or helium nucleus)