<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
2.59 T
Explanation:
Parameters given:
Current flowing through the wire, I = 29 A
Angle between the magnetic field and wire, θ = 90°
Magnetic force, F = 2.25 N
Length of wire, L = 3 cm = 0.03 m
The magnetic force, F, is related to the magnetic field, B, by the equation below:
F = I * L * B * sinθ
Inputting the given parameters:
2.25 = 29 * 0.03 * B * sin90
2.25 = 0.87 * B
=> B = 2.25/0.87
B = 2.59 T
The magnetic field strength between the poles is 2.59 T
Answer:
Explanation:
F = kQq/r²
r = √(kQq/F)
a) r = √(8.899(10⁹)(8)(4) / 18(10¹³)) = 0.0397749... m
r = 40 mm
b) r = √(8.899(10⁹)(12)(3) / 18(10¹³)) = 0.0421876... m
r = 42 mm
Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)
