Answer:
The density ρ of metal block is 8.92g/cm³
So from the given density table this corresponds to copper which has density of 8.92(g/mL)
Explanation:
Oh yeah, I got the correct unit update,
Now this problem bothers on the density of substances
We know that the density of a substance is expressed as
Density ρ= mass/ volume
Given data
Mass of metal block m= 62.44g
Volume of metal block v= 7 cm³
Hence we can find the density of the metal block by plugging in our data into the expression for density
ρ of metal block = 62.44/7
ρ of metal block = 8.92g/cm³
The block is a copper block
<span>The forces of nature are phase forces.</span>
No because sugar is made up of organic material
Given parameters:
Mass of object = 6.7kg
Velocity = 8m/s
Unknown parameter:
Kinetic energy = ?
Energy is defined as the ability to do work. There are two forms of energy;
Kinetic and potential energy.
Kinetic energy is the energy due to the motion of a body. Whereas, potential energy is the energy due to the position of a body usually at rest.
Kinetic energy is mathematically expressed as;
Kinetic energy = 
where m is the mass of the body
v is the velocity of the body
Since we have been given both mass and velocity, input the parameter to solve for the unknown;
Kinetic energy =
x 6.7 x 8² = 214.4J
So the kinetic energy of the body is 214.4J
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.