1) 0.1 M NaCl
_____________________________________________________
Isn't it a because in b at the start of the equation the E in Fe just disappeared
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Difference between Gas and Vapour:
Gas:
A thermodynamic state in which a substance exists only in one phase i.e. Gas phase. In above given examples N₂, He and CO₂ exists as gases at room temperature. These gases cannot form a solid or liquid phase along with gas phase as these states requires very low temperatures.
Vapours:
It is a thermodyanamic state in which a substance exists in more than one phase. In given options Sulfur can exist in vapor state. This is because sulfur exists in a cyclic or chain form due to catenation (self linkage property). Therefore, a lower members of S allotrops can form a vapours.