Answer: Option (A) is the correct answer.
Explanation:
In real gases, there exists force of attraction between the molecules at low temperature and high pressure. This is because at low temperature there occurs a decrease in kinetic energy of gas molecules and high pressure causes the molecules to come closer to each other.
As a result, forces of attraction increases as molecules come closer to each other and therefore, gases deviate from an ideal gas behavior.
And, at low pressure and high temperature there exists no force of attraction or repulsion between the molecules of a gas because they have high kinetic energy. Hence, gases behave ideally at these conditions.
Thus, we can conclude that the statement as the temperature approaches 0 K, the volume of the ideal gas will be larger than the volume of
because ideal gases lack inter-molecular forces, is true.
Please, observe that it is not right to say that a substance content heat.
Heat is not something that a body or substance content. Heat is the transmission of energy due to difference of temperatures.
An endothermic reactions is that where the reactants abosorb energy from the surroundings to occur. The products, then, will be higher in energy than the reactants while the surroundings get colder.
Answer:
dont go to any taco bells in Michigan!! There have been numerous cases of Ligma that have been traced back to Taco Bells across Michigan
Explanation:
Answer: Rate law=
, order with respect to A is 1, order with respect to B is 2 and total order is 3. Rate law constant is 
Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
![Rate=k[A]^x[B]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
k= rate constant
x = order with respect to A
y = order with respect to A
n = x+y = Total order
a) From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :![\frac{4.8\times 10^{-2}}{1.2\times 10^{-2}}=\frac{k[0.10]^x[0.40]^y}{k[0.10]^x[0.20]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%7B1.2%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.20%5D%5Ey%7D)
therefore y=2.
b) From trial 2:
(3)
From trial 3:
(4)
Dividing 4 by 3:![\frac{9.6\times 10^{-2}}{4.8\times 10^{-2}}=\frac{k[0.20]^x[0.40]^y}{k[0.10]^x[0.40]^y}](https://tex.z-dn.net/?f=%5Cfrac%7B9.6%5Ctimes%2010%5E%7B-2%7D%7D%7B4.8%5Ctimes%2010%5E%7B-2%7D%7D%3D%5Cfrac%7Bk%5B0.20%5D%5Ex%5B0.40%5D%5Ey%7D%7Bk%5B0.10%5D%5Ex%5B0.40%5D%5Ey%7D)
, x=1
Thus rate law is ![Rate=k[A]^1[B]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1%5BB%5D%5E2)
Thus order with respect to A is 1 , order with respect to B is 2 and total order is 1+2=3.
c) For calculating k:
Using trial 1: ![1.2\times 10^{-2}=k[0.10]^1[0.20]^2](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-2%7D%3Dk%5B0.10%5D%5E1%5B0.20%5D%5E2)
.
<span><span>m1</span>Δ<span>T1</span>+<span>m2</span>Δ<span>T2</span>=0</span>
<span><span>m1</span><span>(<span>Tf</span>l–l<span>T<span>∘1</span></span>)</span>+<span>m2</span><span>(<span>Tf</span>l–l<span>T<span>∘2</span></span>)</span>=0</span>
<span>50.0g×<span>(<span>Tf</span>l–l25.0 °C)</span>+23.0g×<span>(<span>Tf</span>l–l57.0 °C)</span>=0</span>
<span>50.0<span>Tf</span>−1250 °C+23.0<span>Tf</span> – 1311 °C=0</span>
<span>73.0<span>Tf</span>=2561 °C</span>
<span><span>Tf</span>=<span>2561 °C73.0</span>=<span>35.1 °C</span></span>