Answer: The property that will best provide evidence that the samples are solid includes:
--> if the substance has a definite shape,
-->if the substance has a definite volume
--> if it's tightly packed.
Explanation:
According to the kinetic theory of matter, every substance consist of very large number of very small particles called molecules. These molecules, which are made up of atoms that are the smallest particles of a substance that can exist in a free state.
Matter can exist in the following states:
--> Solid state
--> liquid state or
--> Gaseous state.
The general property of a substance that is in gaseous state includes:
--> Definite shape: A substance can be grouped as a solid if it's shape is fixed that is, it doesn't depend on the shape of other materials.
--> Definite volume: A substance can be grouped as a solid if it occupies its own shape. This is due to the force of cohesion among its molecules.
--> Tightly packed: A substance can be grouped as solid if the molecular movements of the particles are negligible.
From the samples under observation by Juan and kym, if the sample that possesses the above described qualities, it is a solid rather than liquid or gas.
Answer:
19.08 m/s
Explanation:
f = actual frequency emitted by the parked car's horn = 440 Hz
V = speed of sound = 342 m/s
f' = frequency of the horn observed by you = 466 Hz
v = speed of your car moving towards the parked car = ?
frequency of the horn observed by you is given as


v = 19.08 m/s
Answer:
L/D= 112
Explanation:
Aerodynamics can be defined as the branch of dynamics which deals with the motion of air, their properties and the interaction between the air and solid bodies.
Aerodynamics law explains how an airplane is able to fly. There are four forces of flight, and they are; lift, weight, thrust and drag. The amount of lift generated by a wing divided by the aerodynamic drag is known as the lift to drag ratio.
Lift increases proportionally to the square of the speed.
The solutions to the question is the file attached to this explanation.
Lift,L= qC(l). S---------------------------(1).
and,
Drag,D = qC(d).S ----------------------(2).
Hence, Lift to drag ratio,L/D= C(l)/C(d).
Therefore, we have to compute various angle of attack.(check attached file)...
Then, (L/D) will then be equal to 112.