Answer:
A first-class lever: fulcrum is between input and output force; second-class lever: output force is between input force and fulcrum; third-class lever: input force is between fulcrum and output force
The electron's path in the magnetic field is a straight line when viewed from above.
In fact, the electron initially moves upward, while the magnetic field is directed horizontally. The electron experiences a force due to the magnetic field (the Lorentz force), whose direction is given by the right-hand rule:
- index finger --> initial direction of the electron (upward)
- middle finger --> direction of the magnetic field (horizontally, away from the observer)
- opposite direction to the thumb* --> direction of the force (horizontally, but perpendicular to the magnetic field, to the right)
This means that the Lorentz force makes the electron moving perpendicular to the magnetic field in the horizontal plane, and since the direction of the field is not changing, this force does not change its direction, so the electron moves in the same direction of the force in the horizontal plane (to the right), therefore following a straight line.
* the direction should be reversed because the charge is negative.
Answer:

Explanation:
The question, translated, is:
- <em>A steel ball rolls and falls off the edge of a table from 4ft above the floor. If you hit the ground 5ft from the base of the table, what was your initial horizontal velocity?</em>
<em />
<h2>Solution</h2>
<em />
This is a projectile motion, for which, the equations that you will need are:


<u />
<u>1. Calculate the time that it takes the ball to fall 4ft</u>

<u />
<u>2. Calculate the horizontal velocity:</u>

1 is b because a runs 20 and b rus 102 is c