Answer:
2.24dm³
Explanation:
Given parameters:
Mass of He = 40g
Unknown:
Volume of Helium = ?
Solution:
To solve this problem, we convert the given mass to number of moles.
Number of moles =
molar mass of He = 4g/mol
Number of moles =
= 0.1mole
So;
1 mole of gas at rtp occupies a volume of 22.4dm³
0.1 mole of He will occupy a volume of 0.1 x 22.4 = 2.24dm³
Answer:
42 m/s
Explanation:
To we convert units for speed we can use dimensional analysis. First thing we do is seperate the measurement into a fraction. After this we can multiply by 1km over 0.62137 miles. We do this so that the miles cancel out.
×
= 
After this we can use a conversion factor and divide by 3.6.
÷ 3.6 = 42 m/s
Answer:
Density, 
Explanation:
It is given that, placing a sample of iron (II) oxide into a graduated cylinder makes the water volume increase 12.0 mL.
It means that the volume of the sample is 12 mL
The weight of the sample is 76.6 g
We need to find the density of the sample.
12 mL = 12 cm³
The formula of density is given by :

So, the density of the sample is
.
The molecules in ammonia are bonded together by covalent bond; this is the type of bond in which electrons are shared among atoms in the compound. Ammonia is a polar molecule and is made up of one nitrogen atom and three hydrogen atoms. The hydrogen atom in ammonia is bonded to the three hydrogen atoms via sharing of three electron pairs, one with each atom of hydrogen. For each of the three covalent bond formed, one electron is supplied by nitrogen and one by hydrogen atom.