Answer:
0.43 s
Explanation:
We have the following parameters:
Initial velocity, u = 7.4 m/s
Acceleration of gravity, g = 9.8 
Distance, s = 43 in + 10 ft = 1.092 m + 3.048 m = 4.14 m
Time, t = ?
Using the equation of motion
, we have


Using the quadratic formula
where a = 4.9, b = 7.4 and c = - 4.14, and solving for the positive value of t only, we have
s
Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values

The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second
Answer:
Radiation heat energy transfer
Explanation:
The type of heat transfer from the Sun is radiation heat transfer, which is the transfer of heat through electromagnetic radiation
The distance of the Sun to the Earth is several million kilometers away, with the space between being composes of vacuum and the nuclear reaction in the Sun's core generates vast amount of electromagnetic radiation that is transferred all across the universe and reaches the Earth as visible light and radiant energy at the speed of light
The radiant energy transferred from the Sun heats up the Earth, including the car's interior.
Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy