the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
The time must be measured with respect to gravity. As it falls, it has free fall that is the force acting on it will be the gravity.With the distance in account, d = 1/2 gt²
t = √(2d/g)
Answer:
1.35208 m/s
Explanation:
Speed of the boat = 0.75 m/s
Distance between the shores = 100 m
Time = Distance / Speed

Time taken by the boat to get across is 133.33 seconds
Point C is 150 m from B
Speed = Distance / Time

Velocity of the water is 1.125 m/s
From Pythagoras theorem

So, the man's velocity relative to the shore is 1.35208 m/s