Answer:
0.368 cm
Explanation:
x = distance by which the mercury rise
d = depth of the water = 10 cm = 0.10 m
ρ = density of water = 1000 kgm⁻³
ρ' = density of mercury = 13600 kgm⁻³
P₀ = atmospheric pressure
Using equilibrium of pressure on both side
P₀ + ρ g d = P₀ + ρ' g (2x)
(1000) (0.10) = (13600) (2x)
x = 0.00368 m
x = 0.368 cm
<span>the process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth.
Hope this helps.
</span>
From the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
<h3>What is a pendulum?</h3>
A pendulum swings back and forth and can be used to show the change of potential energy to kinetic energy and vice versa.
Given that the kinetic energy is converted to the potential energy; the potential energy at 0.5 m is 3 * 9.8 * 0.5 = 14.7 J.
Following the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
Learn more about pendulum:brainly.com/question/14759840
#SPJ1