Answer:
F=12.5N
Explanation:
Net force = rate of change of momentum

so find the change of momentum P
Pdown

Pup

dP = change in P

so
A 1-kg mass at the earth's surface weighs about C. 10N
The third planet from the Sun is the Earth. It is the seventh largest in terms of size and weighs roughly 5.98 1024 kg. The inherent quality of mass is unaffected by the environment of the object or the technique employed to quantify it.
Newton's law of gravitation can be used to estimate the mass of the Earth. This is set to the fundamental formula, which reads: force (F) = mass (m) times acceleration. Gravitational acceleration (G) is equal to 9.8 m/s2, the Earth's radius is 6.37 106 m, and the gravitational constant (G) is 6.673 1011 Nm2/kg2. The Earth has a mass of 5.96 1024 kg after rearranging the equation and entering all the numbers.
To learn more about earth please visit-
brainly.com/question/14042561
#SPJ4
Answer:
The time constant τ = L/R represent the time requiered for the curent to get value of 63 % of its maximun value
Explanation:
In a circuit RL ( serie circuit with a resistor R and the inductor L ) when a voltage is applied the inductor will have a reaction, such reaction consist in the creation of an electromotive force which will prevent the current to get its maximun value. The time constant which in the case of an inductor is
τ = L/R , represent the time requiered for the crrent to be 63 % of its final value
The Net Force would be 2 N to the left.
21 N is being used to push the box to the right and 23 N is used to push it left. There is a stronger force pushing the box towards the left. The different in the two numbers would give you the net force acting on the box and the direction of the arrow with the greatest force will tell you the direction.
Answer:
The combined speed of the woman and the skateboard is 6.67 m/s.
Explanation:
It is given that,
Mass of woman, m₁ = 60 kg
Speed of woman, v = 10 m/s
The woman jumps onto a giant skateboard of mass, m₂ = 30 kg
Let V is the combined speed of the woman and the skateboard. It can be calculated using the conservation of momentum as :

On solving the above equation we get V = 6.67 m/s
So, the combined speed of the woman and the skateboard is 6.67 m/s. Hence, this is the required solution.