The monomer of glucose makes up all carbohydrates
Answer:
The hypothesis may or may not be true and needs to be tested. It might be the answer to the problem. Hence, it must be tested thoroughly. When these predictions are tested again and again in independent scientific experiments and gets verified, the hypothesis is converted into a scientific theory.
Answer:
The tennis ball will have more kinetic energy
Explanation:
It will have more kinetic energy because the tennis ball is more heavier than a wiffle ball. Furthermore, objects that are heavy will have more kinetic energy than objects that are light. Therefore, the tennis ball is the correct answer.
Answer:
5.1 kg
Explanation:
Its mass on the moon is 5.1 kg because mass is an intrinsic property of a material and does not change with location. Although, its weight might vary because its acceleration of gravity g is dependent on the mass M and radius r of the planet(in this case, moon) involved g = GM/r². Since weight W = mg is dependent o g, weight varies but mass remains constant.
Answer:
1.0×10³ N
Explanation:
μs is the static coefficient of friction. That's the friction that acts on a stationary (non-moving) object when being pushed or pulled.
μk is the kinetic coefficient of friction. That's the friction that acts on a moving object.
To budge the pig (while it's still stationary), we need to overcome the static friction.
F = N μs
For a non-moving object on level ground, the normal force N equals the weight.
F = mg μs
Given m = 130 kg and μs = 0.80:
F = (130 kg) (9.8 m/s²) (0.80)
F = 1019.2 N
Rounded to two significant figures, the force needed to budge the pig is 1.0×10³ N.