Answer:
all soil are also different due to how they were form
Answer:
What is the net ionic equation for a reaction between HCl and NaOH?
Explanation:
A salt is a neutral ionic compound. Let's see how a neutralization reaction produces both water and a salt, using as an example the reaction between solutions of hydrochloric acid and sodium hydroxide. The overall equation for this reaction is: NaOH + HCl → H2O and NaCl
Hope that helped.
The temperature that must be to freeze the solution would be -21.1 ° C.
<h3>How to calculate the freezing temperature of this solution?</h3>
To calculate the freezing temperature we must take into account the following information.
- Solution with a salt concentration of 10% is frozen at -6°C
- Solution with a salt concentration of 20% is frozen at -16°C
- Solution with a higher concentration is frozen at -21.1°C
According to the above, it can be inferred that the puddle has a 50% concentration of salt because they had 12 kg of water and 6 kg of salt.
So the lowest freezing temperature would be 21.1°C because the puddle is 50% concentrated.
Note: This question is incomplete because there is some missing information. Here is the missing information:
- A 10% salt solution freezes at about 20°F (-6°C), and a 20% solution freezes at 2°F (-16°C).
- The lowest freezing point obtainable for salt solutions is −21.1 °C
Learn more about freezing in: brainly.com/question/14131507
Explanation:
Thomson's suggested the plum pudding model of the atom in which the atomic space is made up of electrons surround by positive charges.
Rutherford in his gold foil experiment revised the plum pudding model of the atom;
- He discovered that most of the alpha particles passed through the foil while a few of them were deflected back.
- To explain this observation, he suggested the atomic model of the atom.
- In this model, an atom is made up of a small positively charged center where nearly all the mass is concentrated.
- Surrounding the nucleus is the extranuclear part made up of electrons.
<h3>
Answer:</h3>
83.33 seconds.
<h3>
Explanation:</h3>
<u>We are given;</u>
- Take off velocity as 300 km/hr
- Acceleration as 1 m/s²
We are required to calculate the take off time of the airplane.
<h3>Step 1: Convert velocity from km/hr to m/s </h3>
We are going to use the conversion factor.
The conversion factor is 3.6 km/hr per m/s
Therefore;
Velocity = 300 km/hr ÷ 3.6 km/hr per m/s
= 83.33 m/s
<h3>Step 2: Calculate the take off time</h3>
We know that;
v = u + at
where, u is the initial velocity, v the final velocity, a the acceleration and t is time.
But, initial velocity is Zero
Therefore;
83.33 m/s = 1 m/s² × t
Thus;
time = 83.33 m/s ÷ 1 m/s²
= 83.33 seconds
Therefore, the take off time is 83.33 seconds.