Answer:
In conclusion, the net ionic equation for the reaction between calcium carbonate and hydrochloric acid is CaCO3 solid plus two H+ aqueous react to form Ca2+ aqueous plus CO2 gas plus H2O liquid.
Answer:
Chemical reaction B governs the process
Explanation:
The first part of the question asks to convert the mass of the calcium carbonate given to number of moles.
Mathematically;
Number of moles = mass/molar mass
Molar mass of CaCO3 = 100 g/mol
So the number of moles of CaCO3 will be 2.49/100 = 0.0249 moles
The second part of the question asks to convert the mass of carbon iv oxide to moles of carbon iv oxide
Mathematically;
That is same as ;
Number of moles = mass/molar mass
molar mass of CO2 is 44 g/mol
Number of moles of CO2 = 1.13/44 = 0.0256 moles
Now, if we compare the values of these number of moles, we can see that there are almost equal.
What this means is that the number of moles of calcium carbonate reacted is equal to the number of moles of carbon iv oxide produced.
So what we conclude here is that we have an equal mole ratio between the two compounds.
So the reaction that would be the correct answer will present equal number of moles of carbon iv oxide and calcium carbonate
Thus, we can see that reaction B is the one that governs this process as it is the only reaction out of the three options that present the two compounds with equal number of moles.
Answer: The half-life of a first-order reaction is, 
Explanation:
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 440 s
= initial amount of the reactant = 0.50 M
[A] = left amount = 0.20 M
Putting values in above equation, we get:


The equation used to calculate half life for first order kinetics:

Putting values in this equation, we get:

Therefore, the half-life of a first-order reaction is, 
Answer: colloid
Explanation:
Colloids are solutions in which small sized particles are suspended throughout the solution as they do not settle own their own. Colloids are defined as the mixtures where the size of the particle is within the range of 2nm to 1000 nm. In these mixtures, physical boundary is seen between the dispersed phase and dispersed medium.
Colloids are solutions with particle size intermediate between true solutions and suspensions. Suspensions have large sized particles which settle when left undisturbed for sometime and thus can be filtered off easily. The particle size in colloids is less and hence they do not settle under the effect of gravity.