Kepler did not study the speed of the planets, rather, he studied how the planets move in the solar system. He proposed three laws. As a summary, he described that the planets move around the sun in the shape of an ellipse (orbit), and the Sun being one of the foci. Then, he proposed the period for the planet to complete one revolution around the Sun.
On the other hand, Newton studied the forces acting on the planet (or any object in space) that explain how the planets move around the solar system as described by Kepler. Also, Kepler's observations only apply to planets and not the moons or satellites. Thus, Kepler only made laws from observations, while Newton based it from underlying principles that led him to mathematical equations such as the law of universal gravitation.
The volume of copper : 3.24 ml
<h3>Further explanation
</h3>
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
With the same mass, the volume of objects that have a high density will be smaller than objects with a smaller type of mass
The unit of density can be expressed in g/cm³ or kg/m³
Density formula:

ρ = density
, g/cm³ or kg/m³
m = mass
, g or kg
v = volume
, cm³ or m³
A common example is the water density of 1 gr / cm³
The density of copper : 8.96 gr/ml
mass of copper : 29 g
then the volume :

Group Starts True
A rightward change in equilibrium.
The concentration of gases = [H2] will decrease, [N2] will increase, [NH3] will increase when the new equilibrium is reached.
Additional heat is produced.
The forward and backward reactions' rates quicken in the new equilibrium.
The equilibrium constant decreases as more heat is released.
the exothermic nature of the process.
The equilibrium constant would not have changed if the temperature had remained constant.
Learn more about Equilibrium here
brainly.com/question/13414142
#SPJ4
Answer:
— The molality of chloride ions in 300g of water is. A) 1.00 molal. B) 0.500 molal. C) 0.0553 molal. D) 0.111 molal.
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire create a magnetic field which is concentrated in the hole, denoting the center of the coil