Answer:
reading would be 5.413 m.
Explanation:
Given:-
- The actual distance from ruler to an object is d = 24.0 m
- The adiabatic bulk modulus, B = 2.37 *10^9 Pa
- The density of seawater, ρ = 1025 kg/m^3
- The preset value of speed of sound in air, v_th = 343 m/s.
Find:-
Determine the distance reading that the ruler displays.
Solution:-
- We will first determine the actual speed of the sound ( v_a) in sea-water which can be determined from the following formula:
v_a = √ (B / ρ )
- Plug in the values in the relationship above and compute v_a:
v_a = √ ( 2.37 *10^9 / 1025 )
v_a = 1520.59038 m/s
- The time taken (t) for for the sound to travel from source(ruler) to an object which is d distance away.
d = v_a*t
t = d / v_a
t = 24.0 / 1520.59038
t = 0.01578 s
- The distance reading on the ruler would be preset speed (v_th) of sound in air multiplied by the time taken(t).
reading = v_th*t
reading = (343)*(0.01578)
= 5.413 m
Answer:
B). 3.4 s
Explanation:
As we can see the graph is given between velocity and time
so here we can see that the velocity is changing here with time and initially for some time it moves with constant speed
Then it's speed decreases to next few second and then speed increases to its maximum value
The time after which velocity comes to its maximum value will reach after t = 3 s
so out of the all given options most correct option will be

First answer is Wave length
Answer:
Muscular endurance is the most important factor in performing the activities of daily living.