Weow that’s cool but what is your question
Answer:
8.89288275 m/s
Explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by

Frequency is given by

Angular frequency is given by

Maximum velocity of a particle is given by

The maximum velocity of a particle on the string is 8.89288275 m/s
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz
m = mass = 1,200 kg
A = acceleration = 3 m/s^2
Apply Newton's second law:
Force = mass x acceleration
F = 1,200 x 3 =3600 N
The net force the car experiences is 3600 N