To solve the problem it is necessary to apply the concepts related to heat flow,
The heat flux can be defined as

Where,
k = Thermal conductivity
A = Area of cross-sectional area
d = Length of the rod
Temperature difference between the ends of the rod
Thermal conductivity of copper rod
Area of cross section of rod
Temperature difference
length of rod
Replacing then,



From the definition of heat flow we know that this is also equivalent

Where,
Mass per second
Latent heat of fusion of ice
Re-arrange to find 





Therefore the mass of ice per second that melts is 0.032g
Organization
Growth and development
Response to a stimulus
Homeostasis
Energy
I believe the answer is CONVECTION.
hope that helps!!!
Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form

Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.
Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is
B. inverse plot, 0.51 kilograms/meter3
Because they have different measurements and weight and mass and some measurements are the same