The answer is B frequency. When frequency increases more wave crests pass a fixed point each second. That means the wavelength shortens. So, as frequency increases, wavelength decreases
4A. PE = MxGxH. (You can consider g as 9.8 / 10m/s as well)
509 J = 12x10xH
509 J = 120xH
H = 509/120
H = 4.24 m
Hope u got the answer....pls rate the answer if it is helpful for u....and I'm sorry I could not understand B part so I didn't do it.
Thank you
Answer:
So, at the depth of 24 cm below the surface of the glycerine the pressure is 2970 Pa. Hence, this is the required solution.
Explanation:
Given that,
Pressure exerted by the surface of glycerine, P = 2970 Pa and it is greater than atmospheric pressure.
The density of glycerine,
We need to find the depth h below the surface of the glycerine. The pressure due to some depth is given by :
h = 0.24 meters
or
h = 24 cm
Answer:
The new distance is d = 0.447 d₀
Explanation:
The electric out is given by Coulomb's Law
F = k q₁ q₂ / r²
This electric force is in balance with tension.
We reduce the charge of sphere B to 1/5 of its initial value (
=q₂ = q₂ / 5) than new distance (d = n d₀)
dat
q₁ = 
q₂ = 
r = d₀
In order for the deviation to maintain the electric force it should not change, so we apply the Coulomb equation for the two points
F = k q₁ q₂ / d₀²
F = k q₁ (q₂ / 5) / (n d₀)²
.k q₁ q₂ / d₀² = q₁ q₂ / (5 n² d₀²)
5 n² = 1
n = √ 1/5
n = 0.447
The new distance is
d = 0.447 d₀