Answer:

Explanation:
First reaction gives you the number of moles or the mass from Carbon and hydrogen
for carbon:


Analogously for hydrogen:
0.0310g
have 0.0034gH or 0.0034mol of H
In the second reaction you can obtain the amount of nitrogen as a percentage and find the mass of N in the first sample.

now

this is equivalet to 0.002mol of N
with this information you can find the mass of oxygen by matter conservation.

this is equivalent to 0.004molO
finally you divide all moles obtained between the smaller number of mole (this is mol of H)

and you can multiply by 5 to obtain: 
Answer: Sulfuric acid, H2SO4, can be neutralized by sodium hydroxide, NaOH. The unbalanced equation is:
H2SO4(aq) + NaOH(aq) → Na2SO4(aq) + H2O(l)
A student who was asked to balance the reaction wrote the following:
H2SO4(aq) + Na2OH(aq) →Na2SO4(aq) + H3O(l)
Is this correct? Explain why or why not using what you know about the law of conservation of mass and chemical changes. If necessary, provide the correct balanced equation.
Explanation: The mass of the reactants must equal that of the products. This is because the masses of the products arise from the reactants and no mass is either created or destroyed. The total mass of the reactant must equal that of the product side and vice versa.
The student made an error of protonating the water molecule to H3O+ without a corresponding balance on the reactant side. In this case, it is wrong and ceases to be an equation. The product side masses don't equal the reactant side.
Balancing a chemical equation is done by first writing the correct chemical symbol. The moles and masses of each compound are cross-checked that they are equal on both sides of the equation.
If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.
Answer:
with the molecular formula C3H5(ONO2)3, has a high nitrogen content (18.5 percent) and contains sufficient oxygen atoms to oxidize the carbon and hydrogen atoms while nitrogen is being liberated, so that it is one of the most powerful explosives known.
Explanation:
NTG reduces preload via venous dilation, and achieves modest afterload reduction via arterial dilation. These effects result in decreased myocardial oxygen demand. In addition, NTG induces coronary vasodilation, thereby increasing oxygen delivery.
Answer:
Iron :)))))))))))))))))))))))))