It allowed him to realize that the mass of an atom is concentrated at its center because the atoms mostly went through the foil but some were deflected. He also realized that an atom probably wasn't just empty space and scattered electron and it had a positive center.
Answer:
166 g
Explanation:
Step 1: Write the reaction for the obtaining of Fe from magnetite
Fe₃O₄ ⇒ 3 Fe + 2 O₂
Step 2: Calculate the moles corresponding to 120 g of Fe
The molar mass of Fe is 55.85 g/mol.
120 g × (1 mol/55.85 g) = 2.15 mol
Step 3: Calculate the moles of Fe₃O₄ required to produce 2.15 moles of Fe
The molar ratio of Fe₃O₄ to Fe is 1:3. The moles of Fe₃O₄ required are 1/3 × 2.15 mol = 0.717 mol
Step 4: Calculate the mass corresponding to 0.717 moles of Fe₃O₄
The molar mass of Fe₃O₄ is 231.53 g/mol.
0.717 mol × 231.53 g/mol = 166 g
Electrons is located outside the nucleus