Answer:
189 Joules
Explanation:
Applying,
Q = cm(t₂-t₁)............. equation 1
Where Q = Heat, c = specific heat capacity of water, m = mass of water, t₁ = Initial Temperature, t₂ = Final temperature.
From the question,
Given: m = 15 grams = 0.015 kg, t₁ = 21 °C, t₂ = 24 °C
Constant: c = 4200J/kg.°C
Substitute these values into equation 1
Q = 0.015×4200×(24-21)
Q = 0.015×4200×3
Q = 189 Joules
Answer:
Species
Explanation:
Species is the group of organisms able to interbreed and produce fertile offspring.
Let's break down each word in the question:
"Organisms" means living thing. It can be a plant or animal like we usually think of, but it also includes the really small single-celled living things like some bacteria.
"Interbreed" means to mate with each other.
"Fertile" means that the living thing can also have babies.
"Offspring" means the children that are born.
"Fertile offspring" means that the children that are made must be able to have babies of their own. For example, if a frog and a bird could interbreed, they might produce offspring (children). But, if those frog-birds cannot also have children, then frog-bird is not a species.
Answer:

Explanation:
Given that:
The Half-life of
=
is less than that of 
Although we are not given any value about the present weight of
.
So, consider the present weight in the percentage of
to be y%
Then, the time elapsed to get the present weight of
= 
Therefore;

here;
= Number of radioactive atoms relating to the weight of y of 
Thus:

--- (1)
However, Suppose the time elapsed from the initial stage to arrive at the weight of the percentage of
to be = 
Then:
---- (2)
here;
= Number of radioactive atoms of
relating to 3.0 a/o weight
Now, equating equation (1) and (2) together, we have:

replacing the half-life of
=
( since
)
∴

The time elapsed signifies how long the isotopic abundance of 235U equal to 3.0 a/o
Thus, The time elapsed is 
Answer:
See explanation
Explanation:
The principle of conservation of energy states that energy can neither be created nor destroyed but can be converted from one form to another. Hence, chemical energy in a battery can be converted to electrical energy.
Usually, the conversion of energy from one form to another is not 100% efficient according to the second law of thermodynamics. Some energy is wasted in the process, sometimes as heat.
Hence, in an ideal situation where no heat energy is produced; all the chemical energy is converted to electrical energy (100% energy conversion). There will be no energy loss if no heat is produced.