Answer:
Sulfur
Explanation:
Sulfur has 16 valence electrons, as shown in the diagram.
Answer:
The mixture is made up of different atoms and pure substance is made up of same type of atom.
The main difference is that mixture can be separated into its component by physical mean while pure substances can not be separated by physical process
Explanation:
Mixture:
- The properties of the mixture are not same and contains the properties of all those component present in it.
- it is a combination of one or more Pure substances and can be separated by simple physical methods.
- it have varying boiling and melting point
Examples are:
- mixture of salt and sand
- Salt water is mixture of water and NaCl and can be separated by physical mean.
- Alloys: its a mixture of different metal
- Air: mixture of gases
Pure Substance:
Pure substances are those made of same type of atoms all elements and compounds are pure substances.
- it can not be separated by simple physical mean
- it have very constant and consistent melting and boiling point
Examples are:
- Water : contain only water molecule
- All elements: all elements are pure substance made of same atoms
- All compounds: can not be separated by physical mean.
Answer: 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Explanation:
1) Data:
Water ⇒ C = 1 cal/g°C
m = 65.8 g
Ti = 31.5°C
Tf = 36.9°C
Heat, Q = ?
2) Formula:
Q = mCΔT
3) Calculations:
Q = 65.8g × 1 cal/g°C × (46.9°C - 31.5°C) = 1,013.2 cal
4) You can convert from calories to Joules using the conversion factor:
1 cal = 4.18 J
⇒ 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Kinetic Energy Statement
Kinetic energy is energy that a body possess as a result of its motion. Kinetic energy as it is mathematically written is the "classic statement" of: Kinetic energy is equal to half the mass of an object times its velocity squared.
There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let us look at some of the kinetic energy examples and learn more about the different types of kinetic energy.
Hope this helped!
❤️