Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
Answer:
Mass of bullet is m=0.01kg
Mass of the block is M=4kg
Coefficient=0.25,distance=20m
So, let the speed of the block just after the bullet embedded in it be V and v be the speed of bullet before striking the block,
By applying conservation of momentum,
mv=(m+M)V
V=
M+m
mv
Explanation:
please mark me as the brainliest answer and please follow me for more answers to your questions..
Answer:
The increase in thermal energy results in an increase in pressure.
Explanation:
- The increase in entropy is directly related to the increase in temperature. So the thermal energy in heat engine increases the temperature of that surrounding.
- Higher temperature means the kinetic energy of particles is also higher, their vibration is increasing. So it increases the pressure (ideal gas law).
- In this way the increment in the thermal energy in heat engine moves piston by increasing the pressure.
Answer:
The efficiency is 0.33, or 33%.
Explanation:
From the thermodynamics equations, we know that the formula for the efficiency of a heat engine is:

Where η is the efficiency of the engine, Q_1 is the heat energy taken from the hot source and Q_2 is the heat energy given to the cold object. So, plugging the given values in the formula, we obtain:

This means that the efficiency of the heat engine is 0.33, or 33% (The efficiency of an engine is dimensionless).