You haven't attached any options but anyways, to help you with your question, elements belonging to the same group (e.g. alkali metals, noble gases) all have the same chemical properties. Hydrogen, for example, have the same properties with Sodium, Potassium and Lithium.
The common substance among the product(s) of the first equation and among the reactant(s) in the second equation is H2O(g). We can eliminate that as an intermediate. The overall chemical equation will thus be:
CH4(g) + 2O2(g) → CO2(g) + 2H2O(l),
which is the first answer choice.
In essence, all you’re doing here is swapping water vapor for liquid water.
Solution with a pH of 3 has 10⁻³ moles of H⁺, solution with a pH of 4 has 10⁻⁴ moles of H⁺ and solution with a pH of 5 has 10⁻⁵ moles of H⁺ (in dm³) so the solution with a pH of 3 has 10 times more H⁺ ions than the solution with a pH of 4 and 100 times more H⁺ ions than the solution with a pH of 5.
Answer:
Explanation:
The wavelenght of a radiation is inversely proportional to its frequency. It can be estimated by the following formula:
Where:
is the wavelenght
is the frequency
is the speed of light (arroung 300000 km/s)
The balanced chemical equation for the above reaction is as follows;
2LiOH + H₂SO₄ ---> Li₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
Number of OH⁻ moles reacted = number of H⁺ moles reacted at neutralisation
Number of LiOH moles reacted = 0.400 M / 1000 mL/L x 20.0 mL = 0.008 mol
number of H₂SO₄ moles reacted - 0.008 mol /2 = 0.004 mol
Number of H₂SO₄ moles in 1 L - 0.500 M
This means that 0.500 mol in 1 L solution
Therefore 0.004 mol in - 1/0.500 x 0.004 = 0.008 L
therefore volume of acid required = 8 mL