Answer:
C
Explanation:
If the enthalpy change (i.e. Δ<em>H</em>) of a reaction is negative, then the reaction releases heat and is hence exothermic.
Hence, our answer is C.
Conversely, if Δ<em>H</em> is positive, the reaction absorbs heat and is endothermic.
Δ<em>H</em> tells us nothing about the speed of the reaction.
While Δ<em>H</em> influences free-energy change (Δ<em>G</em> = Δ<em>H</em> - <em>T</em>Δ<em>S</em>), we cannot predict the sign of Δ<em>G</em> given only Δ<em>H </em>(recall that a reaction is spontaneous if Δ<em>G</em> < 0).
the equilibrium concentration of H₂(g) at 700°C = 0.00193 mol/L
0.00193 mol/L
Given that:
numbers of moles of H₂S = 0.59 moles
Volume = 3.0-L
Equilibrium constant = 9.30 × 10⁻⁸
The equation for the reaction is given as :
2H₂S ⇄ 2H₂(g) + S₂(g)
The initial concentration of H₂S =
The initial concentration of H₂S =
= 0.1966 mol/L
The ICE table is shown be as :
2H₂S ⇄ 2H₂(g) + S₂(g)
Initial 0.9166 0 0
Change -2 x +2 x + x
Equilibrium (0.9166 - 2x) 2x x
(since 2x < 0.1966 if solved through quadratic equation)
The equilibrium concentration for H₂(g) = 2x
∴
= 0.00193 mol/L
Thus, the equilibrium concentration of H₂(g) at 700°C = 0.00193 mol/L
To know more about equilibrium concentration
brainly.com/question/13414142
#SPJ4
Let the water evaporate and you'll be left with the sugar, or boil the water and collect the steam. the sugar will be left in the container you boiled the water in and you'll still have the water from the steam.
Answer:
As the temperature increases the pressure increases.
Explanation:
This graph has a positive slope, meaning that there is a direct relationship between the two graphed variables.
Where is the paragraph that we are summarizing v