Answer:
150153.06122 N
Explanation:
m = Mass of person = 75 kg
h = Height of fall = 1 m
g = Acceleration due to gravity = 9.81 m/s²
F = Force
s = Displacement = 0.49 cm
Potential energy is given by

Work is given by

The average force exerted is 150153.06122 N
Measuring density: Measure the mass (in grams) of each mineral sample available to you. The mass of each sample is measured using a balance or electronic scale. Record mass on a chart.
Answer:
brighter
Explanation:
the more light bulbs you add to a series of circuits, the brighter the room will be.
The position of the first ball is

while the position of the second ball, thrown with initial velocity
, is

The time it takes for the first ball to reach the halfway point satisfies



We want the second ball to reach the same height at the same time, so that




Answer:
The right approach is Option b (the force..................exert on you).
Explanation:
- Even before you fall on something like a soft object, users eventually slow to a halt. You are still giving away all the downward momentum, but progressively although with small powers, you are doing so.
- Although you can get injured by massive powers, this gradual displacement is a positive thing. And that is why you have a mattress you would like to settle on.
The other options given are not connected to the situation described. So, the solution here was the right one.