24hours is the correct answer
Answer:

and

Explanation:
See attached figure.
E due to sphere
E due to particule
(1)
according to the law of gauss and superposition Law:
; electric field due to the small sphere with r1=R/4


then:
(2)
on the other hand, for the particule:

⇒
(3)
We replace (2) y (3) in (1):


--------------------
if R<x<2R AND 

remember that 
then:

solving:


but: R<x<2R
so : 
Answer
given,
high temperature reservoir (T_c)= 464 K
efficiency of reservoir (ε)= 25 %
temperature to decrease = ?
increase in efficiency = 42 %
now, using equation




T_C = 348 K
now,
if the efficiency is equal to 42$ = 0.42



The kinetic energy is the same as the potential energy of raising it 40cm (0.4m). That's mgh where m is mass of ball. Its then 3.924*m, whatever m is equal to in kg.