1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
10

Are ocean currents always cold

Engineering
1 answer:
swat323 years ago
8 0

Answer:

The surface ocean currents have a strong effect on Earth's climate. ... However, these areas do not constantly get warmer and warmer, because the ocean currents and winds transport the heat from the lower latitudes near the equator to higher latitudes near the poles.

You might be interested in
Which one of the following activities is not an example of incident coordination
Lady bird [3.3K]
Directing, ordering, or controlling
7 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Handsaw teeth are very sharp: to avoid being cut by the teeth, keep hands and fingers well away from the
siniylev [52]
Handsaw teeth are very sharp: to avoid being cut by the teeth, keep hands and fingers well away from the
path of the blade
6 0
3 years ago
Read 2 more answers
We can model a certain battery as a voltage source in series with a resistance. The open-circuit voltage of the battery is 10 V
Angelina_Jolie [31]

Answer:

51.4 Ohms

Explanation:

By applying voltage division rule

V_f=v_i\times \frac {R_l}{R_l+R_m} where v is voltage, subscripts i and f represnt initial and final, R is resistance, m is internal and l is external.Substituting 7V for final voltage, 10V for initial voltage and the external resistance as 120 Ohms then

7=10*\frac {120}{120+R_m}\\7R_m+840=1200\\R_m={1200-840}{7}=51.428571\approx 51.4 Ohms

3 0
3 years ago
In order to test the reverse route back towards the original host, which of the following will you use? A Standard ping B Extend
Vlad1618 [11]

The function that you will use in order to test the reverse route back toward the original host is known as Extended ping. Thus, the correct option for this question is B.

<h3>What is Ping and traceroute for?</h3>

Ping and traceroute are the common commands you can effectively utilize in order to troubleshoot network problems. Ping is a simple command that can typically test the reachability of a device on the network. While traceroute is a command you use to 'trace' the route that a packet takes when traveling to its destination.

Extended ping permits a router's ping command to use The router's LAN IP address from within the subnet, fully testing the route back to the subnet. A standard ping often does not test the reverse route that you need to back toward the original host.

Therefore, the function that you will use in order to test the reverse route back toward the original host is known as Extended ping. Thus, the correct option for this question is B.

To learn more about Ping and traceroute, refer to the link:

brainly.com/question/28333920

#SPJ1

6 0
1 year ago
Other questions:
  • Answer every question of this quiz
    7·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • Thoughts about drinking and driving
    12·2 answers
  • C programming fundamentals for everyone​
    13·1 answer
  • What can you add to a seatbelt ??<br> HELP ASAP
    15·1 answer
  • Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of t
    14·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • A 1/20 scale model of a wing is used to determine forces on the actual airplane. the 1/20 scale refers to the:_____
    10·2 answers
  • The condition where all forces acting on an object are balanced is called
    5·1 answer
  • Can you help me with this task/homework.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!