<span>a = ΔV/Δt = (5000-10000)/60 = -500/6 = -83.(3) m/sec^2</span>
Answer:
80 meters high
Explanation:
The velocity of the balloon would be g*t (I won't calculate, but will us this later)
We know that the kinetic energy at the bottom equals the potential at the top.
KE = PE
1/2 * m * v^2 = m * g * h
1/2 * m * (g * t)^2 = m * g * h (substitution)
1/2 * m * g^2 * t^2 = m * g * h
1/2 * g * t^2 = h (simplification by dividing the commons between both sides)
h = 1/2 * 9.81 * 4^2
h = 78.48 m (roughly 80 m)
Answer:
72
Explanation:
The displacement of an object can be found from the velocity of the object by integrating the expression for the velocity.
In this problem, the velocity of the sport car is given by the expression

In order to find the expression for the position of the car, we integrate this expression. We find:

where C is an arbitrary constant.
Here we want to find the displacement after 3 seconds. The position at t = 0 is

While the position after t = 3 s is

Therefore, the displacement of the car in 3 seconds is

Answer:
180,000
Explanation:
Frequency is a quantity that is measured in Hertz [Hz] and it represents the number of rotations per second.
A motor with a frequency of 50 Hz will rotate 50 times per second.
Since we don't want to know how many times it rotates per second, but per hour. The first step is to find how many seconds there are in an hour and then multiply that amount by 50.
Seconds in an hour:
there are 60 seconds per minute, and 60 minutes per hour, thus there are
60*60 = <u>3,600 seconds in an hour</u>
We know that the motor will rotate 50 times per second so to find the number of rotations in 1 hour = 3,600 seconds we multiply:
50*3,600 = 180,000 rotations
Answer:
false
Explanation:
since it has seven valence electrons it means it's a non metal and non metals always gain electrons.