1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
9

What are pollutants of greatest concern and who is at risk?

Physics
1 answer:
atroni [7]3 years ago
6 0
Oil leakage in aquatic areas. (fish)
Burning fuel. (Air/global warming)
Toxic waste burried in dirt (living Creatures)
Lights/Electricity (destroyes Birds migration)
Noise (migration on dolphines and other sea mammals)
You might be interested in
Most of the currents identified have a circular shape. This is because as the air and water move between the equator to the pole
Morgarella [4.7K]
I believe it is true . Somebody correct me if I’m wrong!
5 0
2 years ago
sticking your fingers into a wall socket will not bring you into direct contact with an electrical current. true or false
SCORPION-xisa [38]
The correct answer is false cause how can u fit your finger in a wall something it's to small
3 0
3 years ago
Read 2 more answers
If Chris drives 27 km N and then 40 km E , what is the distance and displacement
Bas_tet [7]
The answer would be 13.
3 0
3 years ago
Answer fast please !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
iogann1982 [59]
I believe it's the the third one. :)
<span />
8 0
3 years ago
Read 2 more answers
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE ANSWER!!!!!
    13·1 answer
  • Stu wanted to calculate the resistance of a light bulb connected to a 4.0-V battery, with a resulting current of 0.5 A. He used
    12·2 answers
  • A good model of the solar system to present to elementary is the Ptolemaic model.
    15·1 answer
  • How is Uranus colder than Neptune
    8·1 answer
  • Which of the following statements about iron filings placed upon glass resting on top of a bar magnet is false?
    11·1 answer
  • A pitcher exerts 100.0 N of force on a ball with a velocity of 45 m/s. What is the pitcher's power?
    7·1 answer
  • How does velocity change in a circular motion​
    8·1 answer
  • Most persons are of the belief that the old time hard or solid iron cars are much safer in collisions than the new model softer
    11·1 answer
  • Which chemical reaction is most likely the slowest?
    9·1 answer
  • Please help. It’s probably easy
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!