The molar mass of this gas is 92.3 g/mol
Calculation
By use ideal gas equation PV =nRT where
n=mole p=pressure V= volume R = gas constant T= temperature
n = mass /molar mass(MM)
substitute in the equation
PV =(mass/MM)RT
mass = density x volume(V)
Therefore PV =(density xV/ MM) xRT
divide both side by by V
P= (density/Mm) xRT
making MM the subject of the formula
MM = densityPRT
At STP = P= 1 atm, R= 0.0821 L.atm/Mol.k T = 273 K
MM is therefore = 4.12 g/l x 1 atm x 0.081 L.atm/mol.k x 273 K = 92.3 g/mol
Generally (but far from universally), the elements within a group have similar characteristics. Antimony, nitrogen, and arsenic are all part of the same group as phosphorous (the pnictogens, or group 5A). Oxygen is not in this group, but rather in an adjacent group (the chalcogens, or group 6A). Thus, the answer here should be oxygen.
That said, there can be very significant differences in characteristics among the elements within a group, and that is certainly the case here. For example, free nitrogen exists predominantly as a molecular gas (N₂) and makes up about 78% of the atmosphere we breathe. Elemental arsenic (As), while in the same group as nitrogen, is naturally found in the solid state and is poisonous to humans (arsenic is sometimes included among the toxic heavy metals, although it’s technically a metalloid).
<h3>What is the oxidation number of oxygen in H2O?</h3>
Oxygen almost always has an oxidation number of -2, except in peroxides (H 2 O 2) where it is -1 and in compounds with fluorine (OF 2) where it is +2. Hydrogen has an oxidation number of +1 when combined with non-metals, but it has an oxidation number of -1 when combined with metals.
<h3><em>Sure hoep this helps you :)</em></h3>
Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
Answer: 35.4 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
Molality = 2.65
n= moles of solute =?
= volume of solution in ml = 445 ml
Putting in the values we get:


Mass of solute in g=
Thus 35.4 grams of
is needed to prepare 445 ml of a 2.65 m solution of
.