Another common household items is AA Alkaline batteries , I found these weigh approx 23 gram of them would have a mass of around 500 +/-5%. Never or unused , same mass
Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
Explanation:
<h3>that`s a the train car, that you asked the meaning, of that if the train car rolls it`s doing it`s speed, and it`s not ganna fall off the the trail of the train, car.</h3>