Answer:
[H₃O⁺] = 1.4 × 10⁻⁹ M.
Explanation:
NH₄Cl is a salt that dissolves well in water. The 2.5 M NH₄Cl will give an initial NH₄⁺ concentration of 2.5 M.
NH₃ is a weak base. It combines with water to produce NH₄⁺ and OH⁻. The opposite process can also take place. NH₄⁺ combines with OH⁻ to produce NH₃ and H₂O. The final H₃O⁺ concentration can be found from the OH⁻ concentration. What will be the final OH⁻ concentration?
Let the increase in OH⁻ concentration be x. The initial OH⁻ concentration at room temperature is 10⁻⁷ M.
Construct a RICE table for the equilibrium between NH₃ and NH₄⁺:
.
The
value for ammonia is small. The value of x will be so small that at equilibrium,
and
.
.
.
.
Again,
at room temperature.
Answer: 1.5mol NH3
Explanation: 1N2+3H2= NH3
0.5 mol N2x 3NH3/1molN2= 0.5x3= 1.5mol NH3
Is this the full question?
<span>Heat that flows by conduction is the transfer of thermal energy between substances in contact. For this to happen, what must occur?
A) The two systems must be the same temperature.
B) The two systems must not be touching each another.
C) One system must have higher kinetic energy than the other system.
D) The thermal energy of one system must be the same as the thermal energy of the other system.</span>
Answer:
no .........................
Elias could be standing on the transform boundary.
Answer: Option 1.
<u>Explanation:</u>
Transform boundaries are places where plates slide sideways past one another. At change limits lithosphere is neither made nor devastated. Many change limits are found on the ocean bottom, where they associate fragments of veering mid-sea edges. California's San Andreas issue is a transform boundary.
Transform boundaries are regions where the Earth's plates move past one another, scouring along the edges. Every one of these three sorts of plate limit has its own specific kind of flaw (or break) along which movement happens. Transforms are strike-slip issues. There is no vertical movement—just horizontal.