Answer:
3CaBr2 + 2LI3PO4 - > Ca3(PO4) 2 + 6LiBr
Explanation:
The first one I did was PO4. There are two on the right side, so I added 2 to Li3PO4 on the other side. That balanced the PO4s and then gave me 6 Lithiums so I balanced that one next on the right side. I added 6 to LiBr which balanced the Li but then gave me 6 Br, so I finished it off by adding 3 in front of CaBr2 which balanced the calcium and bromines.
Here was the process:
CaBr2+2Li3PO4 -> Ca3(PO4)2+LiBr
Balances PO4 (2on both sides)
CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Lithiums (6 on each side)
3CaBr2+2Li3PO4 -> Ca3(PO4)2+6LiBr
Balances Calciums and Bromines (3 Calciums and 6 Bromines each side)
Hope this helped!
Answer:
ptotal=pA+pB+pC
Explanation:
it is defined as the sum le the pressures le each individual gas ^
The mass of HCHO2 and NaCHO2 to be added to the buffer solution are 0.23g and 0.44g respectively
Data;
- Volume of solution = 260mL
- conc. of HCHO2 = 2.5*10^-2M
- conc. of NaCHO2 = 2.5*10^-2M
<h3>Mass of Reagent Added</h3>
To calculate the mass of reagent added, let's start with HCHO2
The mass of HCHO2 to be added is the number of moles of HCHO2 multiplied by it's molar mass.

The mass of NaCHO2 to be added in the buffer solution is

The mass of HCHO2 and NaCHO2 to be added to the buffer solution are 0.23g and 0.44g respectively
Learn more about buffer solution here;
brainly.com/question/22390063
Answer:
Hydrogen is placed above group in the periodic table because it has ns1 electron configuration like the alkali metals. However, it varies greatly from the alkali metals as it forms cations (H+) more reluctantly than the other alkali metals.
Explanation: