From ideal gas law, PV=nRT
where P is the pressure, V is the volume of the container, n is number of moles, R is the gas constant and T is the temperature.
Hence, 
T= 110.65 k
Kinetic Energy = 
K.E= 
<h3>What is a kinetic energy? </h3>
The energy an object has as a result of motion is known as kinetic energy.
A force must be applied to an object in order to accelerate it. We must put in effort in order to apply a force. After the work is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transferred and is dependent on the mass and speed attained.
Kinetic energy can be converted into other types of energy and transported between objects. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's initial kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the collision.
To know more about kinetic energy, visit:
brainly.com/question/22174271
#SPJ4
Answer:
14.3°C
Explanation:
Find the ratio of 10°C : 700ml then use the same ratio to 1000ml.
Have a great day <3
Answer:
d₂ = 1.466 m
Explanation:
In this case we must use the rotational equilibrium equations
Στ = 0
τ = F r
we must set a reference system, we use with origin at the easel B and an axis parallel to the plank
, we will use that the counterclockwise ratio is positive
+ W d₁ - w_cat d₂ = 0
d₂ = W / w d₁
d₂ = M /m d₁
d₂ = 5.00 /2.9 0.850
d₂ = 1.466 m
In a constant acceleration of 3m per second, after 10 seconds,
3 x 10 = 30
B. 30m/s is your answer
hope this helps :D
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.