Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
Answer: 1. P1V1 = P2V2
2. P stands for pressure
3. Units for Pressure are atm and Pa
4. V stands for volume
5. Units for volume is in mL
Explanation: Boyle's Law is a gas law that states the relationship between pressure and volume of a gas.
Answer:
i think its b.c but I'm not sure
<u>Answer:</u> The volume of carbon dioxide gas at STP for given amount is 106.624 L
<u>Explanation:</u>
We are given:
Moles of carbon dioxide = 4.76 moles
<u>At STP:</u>
1 mole of a gas occupies a volume of 22.4 Liters
So, for 4.76 moles of carbon dioxide gas will occupy a volume of = 
Hence, the volume of carbon dioxide gas at STP for given amount is 106.624 L
Answer:
Last Quarter also called Third Quarter.
Explanation: