[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>
In May 1915, Lassen Peak, California, the southernmost active volcano in the Cascade Range, erupted explosively. Avalanches, mudflows, and flows of hot ash and gas devastated nearby areas, and volcanic ash fell as far away as 200 miles to the east. The Lassen area remains volcanically active, and the volcano hazards demonstrated in 1915 still can threaten not only nearby areas but also more distant communities. Recent work by scientists with the U.S. Geological Survey (USGS) in cooperation with the National Park Service is shedding new light on these hazards.
hope this helps!
Answer:
24.309
Explanation:
mass×percentage+.. = average amu
23.985×78.7/100+24.986×10.13/100+25.983×11.17/100
to three decimal places
=24.309
Answer:
Partial pressure of
in the gas was 733 torr and mass of
in the sample was 2.12 g.
Explanation:
a) Total pressure of gas = (partial pressure of water vapour)+(partial pressure of
)
Here partial pressure of water vapour is 21 torr and total pressure of gas is 754 torr.
So, partial pressure of
= (total pressure of gas)-(partial pressure of water vapour) = (754 torr) - (21 torr) = 733 torr
b) Lets assume that
behaves ideally. Hence-
PV=nRT
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin
here P = 733 torr =
= 0.9646 atm
V = 0.65 L, R = 0.082 L.atm/(mol.K), T=(273+22)K = 295 K
So, 
= 
= 0.0259 moles
As 3 moles of
are produced from 2 moles of
therefore 0.0259 moles of
are produced from
moles or 0.0173 moles of
.
Molar mass of
= 122.55 g
So mass of
in sample = 
= 2.12 g