Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:

The coefficient of friction between the soap and the floor is 0.081
If Juan steps on the soap with a force of 493 N, this is her weight, W. This weight also equals the normal reaction on the floor, N.
We know that frictional force F = μN where μ = coefficient of friction between soap and floor.
So, μ = F/N
Since F = 40 N and N = W = 493 N,
μ = F/N
μ = 40 N/493 N
μ = 0.081
So, the coefficient of friction between the soap and the floor is 0.081
Learn more about coefficient of friction here:
brainly.com/question/13923375
Answer:
B)
Explanation:
The value the scale shows is the reaction force to the normal force (they are equal by Newton's 3rd Law) that the scale exerts on Eric.
The forces on Eric are his weight (downward) and this normal force (upward), so we can write the net force over him as (also using Newton's 2nd Law):

which means

and for our values this is:

Answer:
I = 1.38 A
Explanation:
Given that,
Charge, q = 5000 C
Time, t = 1 hour = 3600 s
We need to find the current intensity. The current intensity is equal to the electric charge per unit time. It can be given by :

Substitute all the values in the above formula

So, the current intensity is 1.38 A.
Answer:
The magnitude of the net force F₁₂₀ on the lid when the air inside the cooker has been heated to 120 °C is 
Explanation:
Here we have
Initial temperature of air T₁ = 20 °C = 293.15 K
Final temperature of air T₁ = 120 °C = 393.15 K
Initial pressure P₁ = 1 atm = 101325 Pa
Final pressure P₂ = Required
Area = A
Therefore we have for the pressure cooker, the volume is constant that is does not change
By Chales law
P₁/T₁ = P₂/T₂
P₂ = T₂×P₁/T₁ = 393.15 K× (101325 Pa/293.15 K) = 135,889.22 Pa
∴ P₂ = 135.88922 KPa = 135.9 kPa
Where Force =
we have
Force =
.