Answer:
D) The heavier ball will have a higher temperature because the change of temperature is inversely proportional to mass.
Explanation:
As stated in the problem, the amount of heat released by each ball is

where
m is the mass of the ball
Cp is the specific heat of iron (so, it is equal for both balls)
is the change in temperature of each ball
In this problem, we are said that the amount of heat released by the two balls, Q, is the same. Cp is also the same: this means that the product
must be the same for the two balls. So, the mass and the change in temperature are inversely proportional: therefore, the heavier ball will have a smaller change in temperature. And since both balls starts from the same temperature, 100 C, this means that the heavier ball will reach a higher temperature than the lighter ball.
The force needed to overcome sliding friction is more than the force needed to overcome rolling friction or static or even fluid
Answer:
400 W/m^2 and 31℃
Explanation:
The output heat flux q"= 20 W/m^2 (geven)
The output heat flux from.the wall to the air by convection
q"conv = h(ts - t∞)
q"conv = 20(50-30) = 400 W/m^2
Therefor, this case is unsteady and the wall temperature changes with time till the energy balance exist.
ENERGY BALANCE
The input energy must be equal to the output energy for steady state condition. If not the state will be unstaidy or transient.
2. Its noticed that the output heat flux is not that the I put heat flux, therefore the wall tempers will be decreased till the output heat flux is reduced to the value of the given input heat flux
T steady = T∞ +q"/h
= 30 + 20/20 = 31℃
Answer:
B, C and E
Explanation:
The unit of resistance in the international system is the Ohm, the equation that describes the resistance is:

Where (l) is for lenght of the wire, (S) is the area and (p) its the constant associated to the conductor.
It's related by the Ohm's Law:

If the same atoms appear on both sides, then it's balanced.
In this reaction, there are 4 Oxygens, 2 Carbons, and 2 Nitrogens on each side. So numerically, <em>it's balanced</em>. But I don't know enough chemistry to say whether the reaction is possible.