Answer:
m = 8
Explanation:
A telescope is a device that allows us to see objects that were very far from us, it is built by the combination of two lenses, the one with the lowest focal length near the eye and that is the one or the one with the greatest focal length, the most eye-flounder . The magnification of the telescope is
m = - f₀ /
Where f₀ is the focal length of the lens and f_{e} is the false distance of the eyepiece.
It is this problem that gives us the diopter of each lens, these are related to the focal length in meters
D = 1 / f
Let's find the focal length
f₁ = 1 / D₁
f₁ = 1 / 1.16
f₁ = 0.862 m
f₂ = 1 / 9.37
f₂ = 0.1067 m
Therefore, the lens with f₂ is the eyepiece and the slow one with the
distance focal f₁ is the objective.
Let's calculate
m = - f₂ / f₁
m = - 0.862 / 0.1067
m = 8
Answer: spectroscopy
Spectroscopy is the separation of the light in the different wavelengths and spectrophotometry measures the intensities of the different components of the light to get the composition of substances.
Answer:
e = 0.0898m
v = 2.07m/s
Explanation:
a) According to Hooke's law
F = ke
e is the extension
k is the spring constant
Since F = mg
mg = ke
e = mg/k
Substitute the given value
e = 1.1(9.8)/120
e = 10.78/120
e = 0.0898m
Hence it is stretched by 0.0898m from its unstrained length
2) Total Energy = PE+KE+Elastic potential
Total Energy = mgh +1/2mv²+1/2ke²
Substitute the given value
5.0= 1.1(9.8)(0.2)+1/2(1.1)v²+1/2(120)(0.0898)²
Solve for v
5.0 = 2.156+0.55v²+0.48338
5.0-2.156-0.48338= 0.55v²
2.36 =0.55v²
v² = 2.36/0.55
v² = 4.29
v ,= √4.29
v = 2.07m/s
Hence the required velocity is 9.28m/s
<span>(M G H)=(0.5 x 9.8 x 10) = 49 joules.</span>