Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A
Answer:
B
Explanation:
Speed is the magnitude of the velocity vector, so it can never be negative.
Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205