Answer:
he predicted the properties from known elements above and belws the unknown in the same group
Explanation:
What allowed Mendeleev to make predictions of undiscovered elements
He realized that an element on this table with one known element above it and one known element below it had to have properties between the two known elements
How did Mendeleev predict gallium and germanium?
Based on gaps in the periodic table Mendeleev deduced that in these gaps belonged elements yet to be discovered. Based on other elements below and above in the same group he predicted the existence of eka-aluminum, eka-boron, and eka-silicon, later to be named gallium (Ga), scandium (Sc), and germanium (Ge).
Answer:

Explanation:
Hello there!
In this case, according to the described chemical reaction, Cl2 replaces iodine in NaI in order to produce I2 and NaCl:

It is possible to realize how chlorine replaces iodine in agreement with the single displacement reaction. Moreover, since chlorine and iodine atoms are not correctly balanced, we add a 2 in front of both NaI and NaCl in order to do so:

Best regards!
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
Answer:
2Fe + 6HC2H3O2 → 2Fe(C2H3O2)3 + 3H2
Explanation:
There you go