Answer:
The nucleus of an atom consists of Protons and Neutrons.-A.
Hello,
Your questions states:
During a change of state, the temperature of a substance _____?
In which you gave us some choices:
A. decreases if the arrangement of particles in the substance changes.
B. remains constant until the change of state is complete.
C. increases if the kinetic energy of the particles in the substance increases.
D. increases during melting and vaporization and decreases during freezing and condensation.
Your answer would be:
B. remains constant until the change of state is complete.
Your explanation/Reasoning:
It absorbs the energy, then after the phase changes it then increases the temperature all over again.
Have a nice day:)
Hope this helps!
~Rendorforestmusic
Molarity is defined as the ratio of number of moles to the volume of solution in litres.
The mathematical expression is given as:

Here, molarity is equal to 1.43 M and volume is equal to 785 mL.
Convert mL into L
As, 1 mL = 0.001 L
Thus, volume =
= 0.785 L
Rearrange the formula of molarity in terms of number of moles:

n = 
= 1.12255 mole
Now, Number of moles = 
Molar mass of potassium hydroxide = 56.10 g/mol
1.12255 mole = 
mass in g =
= 62.97 g
Hence, mass of
= 62.97 g
Answer:
The answer is "2%"
Explanation:
Equation:


Formula:
![Ka = \frac{[H^{+}][NO_2^{-}]}{[HNO_2]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BNO_2%5E%7B-%7D%5D%7D%7B%5BHNO_2%5D%7D)
Let
at equilibrium

therefore,
![[H^{+}] = 2.0\times 10^{-2} \ M = 0.02 \ M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%202.0%5Ctimes%2010%5E%7B-2%7D%20%5C%20M%20%3D%200.02%20%5C%20M)
Calculating the % ionization:
![= \frac{([H^{+}]}{[HNO_2])} \times 100 \\\\= \frac{0.02}{1}\times 100 \\\\= 2\%\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%28%5BH%5E%7B%2B%7D%5D%7D%7B%5BHNO_2%5D%29%7D%20%5Ctimes%20100%20%5C%5C%5C%5C%3D%20%5Cfrac%7B0.02%7D%7B1%7D%5Ctimes%20100%20%5C%5C%5C%5C%3D%202%5C%25%5C%5C%5C%5C)
Answer:
a definite to indefinite
Explanation:
because if it is in liquid the volume is trusted,but if it is in gas the volume would have multiplied
i think u can pit it well